2 resultados para East China Sea

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the Ulleung Basin is an important biological hot spot in East/Japan Sea (hereafter the East Sea), very limited knowledge for seasonal and annual variations in the primary productivity exists. In this study, a recent decadal trend of primary production in the Ulleung Basin was analyzed based on MODIS-derived monthly primary production for a better annual production budget. Based on the MODIS-derived primary production, the mean daily primary productivity was 766.8 mg C m-2 d-1 (SD=+/- 196.7 mg C m-2 d-1) and the annual primary productivity was 280.2 g C m-2 yr-1 (SD=+/- 14.9 g C m-2 yr-1) in the Ulleung Basin during the study period. The monthly contributions of primary production were not largely variable among different months, and a relatively small interannual production variability was also observed in the Ulleung Basin, which indicates that the Ulleung Basin is a sustaining biologically productive region called as hot spot in the East Sea. However, a significant recent decline in the annual primary production was observed in the Ulleung Basin after 2006. Although no strong possibilities were found in this study, the current warming sea surface temperature and a negative phase PDO index were suggested for the recent declining primary production. For a better understanding of subsequent effects on marine ecosystems, more intensive interdisciplinary field studies will be required in the Ulleung Basin.